Upper Bounds of Dynamic Chromatic Number

نویسندگان

  • Hong-Jian Lai
  • Bruce Montgomery
  • Hoifung Poon
چکیده

A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic k-coloring is the dynamic chromatic number χd(G). We prove in this paper the following best possible upper bounds as an analogue to Brook’s Theorem, together with the determination of chromatic numbers for complete k-partite graphs. (1) If ∆ ≤ 3, then χd(G) ≤ 4, with the only exception that G = C5, in which case χd(C5) = 5. (2) If ∆ ≥ 4, then χd(G) ≤ ∆+ 1. (3) χd(K1,1) = 2, χd(K1,m) = 3 and χd(Km,n) = 4 for m,n ≥ 2; χd(Kn1,n2,···,nk ) = k for k ≥ 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On Dynamic Coloring of Graphs

A dynamic coloring of a graph G is a proper coloring such that for every vertex v ∈ V (G) of degree at least 2, the neighbors of v receive at least 2 colors. In this paper we present some upper bounds for the dynamic chromatic number of graphs. In this regard, we shall show that there is a constant c such that for every k-regular graph G, χd(G) ≤ χ(G) + c ln k + 1. Also, we introduce an upper b...

متن کامل

no-homomorphism conditions for hypergraphs

In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.

متن کامل

Game chromatic number of graphs

y Abstract We show that if a graph has acyclic chromatic number k, then its game chromatic number is at most k(k + 1). By applying the known upper bounds for the acyclic chromatic numbers of various classes of graphs, we obtain upper bounds for the game chromatic number of these classes of graphs. In particular, since a planar graph has acyclic chromatic number at most 5, we conclude that the g...

متن کامل

On Sum Coloring of Graphs with Parallel Genetic Algorithms

Chromatic number, chromatic sum and chromatic sum number are important graph coloring characteristics. The paper proves that a parallel metaheuristic like the parallel genetic algorithm (PGA) can be efficiently used for computing approximate sum colorings and finding upper bounds for chromatic sums and chromatic sum numbers for hard– to–color graphs. Suboptimal sum coloring with PGA gives usual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2003